Образование сегодня » Использование информационных технологий в обучении информационному моделированию учащихся старших классов в рамках элективного курса информатики » Информационное математическое моделирование: понятие, цели и этапы

Информационное математическое моделирование: понятие, цели и этапы

Страница 6

Компьютерное моделирование систем часто требует решения дифференциальных уравнений. Важным методом является метод сеток, включающий в себя метод конечных разностей Эйлера. Он состоит в том, что область непрерывного изменения одного или нескольких аргументов заменяют конечным множеством узлов, образующих одномерную или многомерную сетку, и работают с функцией дискретного аргумента, что позволяет приближенно вычислить производные и интегралы. При этом бесконечно малые приращения функции f = f(x, у, z, t) и приращения ее аргументов заменяются малыми, но конечными разностями.

Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т. е. промоделировать на своем специфическом языке закономерности окружающего мира. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т. е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Однако, возможности аналитических методов решения сложных математических задач очень ограничены и, как правило, эти методы гораздо сложнее численных. В нашем курсе доминируют численные методы, реализуемые на компьютерах. Отметим, что понятия «аналитическое решение» и «компьютерное решение» отнюдь не противостоят друг другу, так как

а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований;

б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается наглядного восприятия описываемого ею процесса. Эту формулу (хорошо еще, если просто формулу!) нужно протабулировать, представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется «визуализацией». Очевидно, возможности современных компьютеров наилучшим образом соответствуют этой задаче.

Рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (рис. 8).

Первый этап - определение целей моделирования. Основные из них таковы:

1) Понимание

Модель в этой ситуации нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром.

2) Управление

Модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях;

3) Прогнозирование

Модель используется для того, чтобы прогнозировать прямые и косвенные последствия воздействия на объект заданными способами.

Поясним это на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же произошло, обусловив уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Страницы: 1 2 3 4 5 6 7 8

Прочее о педагогике:

Трактовка определения функционально-целевой направленности учебника Н.Ф. Талызиной
Оригинальную трактовку определения функционально-целевой направленности учебника, вытекающую из анализа целей и содержания обучения, учёта закономерностей процесса усвоения им индивидуальных особенностей учащихся, даёт Ф. Талызина. Рассмотрев вначале функции преподавателя в процессе учения, усвоени ...

Изучение иностранных языков
Конечно же, мультикультурный компонент образования в первую очередь реализуется через изучение иностранных языков. Значимость языка как коммуникативного компонента состоит в том, что он является основным каналом, посредством которого ребенок приобщается к культуре и выстраивает свой социальный опыт ...

Система мониторинга педагогической деятельности, реализуемая в ДОУ
Структура мониторинга и педагогической диагностики в ДОУ, этапы работы. I. Ориентационный этап: выбор проблемы, постановка цели. II. Диагностико-конструктивный этап: планирование диагностической деятельности, ее реализация, диагностическое прогнозирование. III. Обучающе-коррекционный этап: разработ ...

Методы воспитания

Методы воспитания

«Наука о воспитании» - так практически во всех справочных, научных и учебных изданиях определяется педагогика.

Образование, воспитание и развитие

Образование, воспитание и развитие

Что такое педагогика? Обратимся к термину "педагогика" и уточним, значения, которые сегодня придают этому слову.

Главное меню

Copyright © 2025 - All Rights Reserved - www.idealeducator.ru