АВСД –параллелограмм, АВ = ВС.
Доказать: ВД | АС
Обратная теорема:
Дано: АВСД –параллелограмм, ВД | АС.
Доказать: АВ=ВС
Вспоминая уточненное определение ромба, даем такую формулировку обратной теоремы: "Если в параллелограмме диагонали взаимоперпендикулярны, то этот параллелограмм — ромб".
Схема аналитического рассуждения при отыскании доказательства этой теоремы.
АВСД – ромб
АВСД – параллелограмм АВ=ВС
DАВО = DСВО ÐАОВ = ÐСОВ
Ý ВД | АС
АО = ОС ВО – общая ÐАОВ = ÐСОВ
Ý
АВСД – параллелограмм ВД | АС
Аналогично формулируем второй признак ромба: "Если в параллелограмме диагональ делит угол пополам, то этот параллелограмм — ромб". Аналитическое рассуждение проводится аналогично.
Схематическая запись доказательства
АВСД — параллелограмм ÞАД II ВС Þ (Ð1 = Ð3, Ð1 = Ð2) Þ
ÞÐ2 = Ð3 Þ (АВ=BС, АВСД - параллелограмм) Þ АВСД — ромб.
Обобщая полученные результаты, полезно обратить внимание школьников на тот факт, что равенство диагоналей не выделяет прямоугольник из множества всех четырехугольников, но выделяет его из множества параллелограммов, и предложить им самостоятельно сформулировать аналогичные утверждения (их 2!) для ромба.
Для поверки того, владеют ли учащиеся признаками параллелограмма, ставим перед ними следующую проблему:
Как сформулировать признаки прямоугольника и ромба, основанные на свойствах их диагоналей, чтобы они выделяли прямоугольник и ромб из множества всех четырехугольников? Подсказка, если ученики не справляются: условие АВСД — параллелограмм, каким требованием относительно его диагоналей можно заменить.
Получаем признаки:
1. Если в четырехугольнике диагонали равны и точкой их пересечения делятся пополам, то этот четырехугольник — параллелограмм.
2. Если в четырехугольнике диагонали взаимноперпендикулярны и делятся точкой пересечения пополам, то этот четырехугольник — параллелограмм.
3. Признак формулируем аналогично.
Переходя к выяснению признаков квадрата, подчеркиваем, что квадрат является как частным случаем прямоугольника, так и ромба и следовательно обладает всеми свойствами прямоугольника и всеми свойствами ромба. Ставится проблема: выделить комбинации свойств диагоналей, которые выделяли квадрат из множества прямоугольников, из множества ромбов, их множества параллелограммов, из множества четырехугольников.
Если ученики осмыслили рассмотренный материал о признаках прямоугольника и ромба, то они легко ответят на поставленные вопросы и сформулируют следующие признаки квадрата:
Квадратом является:
Прямоугольник с взаимно–перпендикулярными диагоналями,
Прямоугольник, у которого диагональ делит угол пополам.
Ромб с равными диагоналями.
Параллелограмм, у которого диагонали равны и взаимно–перпендикулярны.
Параллелограмм, у которого диагонали рваны и делят угол пополам.
Четырехугольник, у которого диагонали равны, взаимно–перпендикулярны и в точке пересечения делятся пополам.
После этого можно перейти к решению задач, требующих применения изученных признаков.
Прочее о педагогике:
Варианты урегулирования конфликтов
При любом варианте развития конфликта задача педагога состоит в том, чтобы превратить противодействие сторон во взаимодействие, деструктивный конфликт — в конструктивный. Для этого необходимо проделать ряд последовательных операций. . 1. Добиться адекватного восприятия оппонентами друг друга. Конфл ...
Формирование сознательной дисциплины и культуры поведения в процессе
воспитания
Одно из центральных мест в системе нравственного воспитания школьников занимает воспитание сознательной дисциплины и культуры поведения. Дисциплина предполагает организованность, порядок в той или иной области, жизнедеятельности людей. Дисциплина отражает соответствие поведения и образа жизни челов ...
Современные тенденции развития образования
Кратко охарактеризуем современные тенденции развития образования: 1. Гуманизация образования — рассмотрение личности учащегося как высшей ценности общества, акцент на формирование гражданина с высокими интеллектуальными, моральными и физическими качествами. И хотя принцип гуманизации является одним ...
Методы воспитания
«Наука о воспитании» - так практически во всех справочных, научных и учебных изданиях определяется педагогика.
Образование, воспитание и развитие
Что такое педагогика? Обратимся к термину "педагогика" и уточним, значения, которые сегодня придают этому слову.